作者:0XNATALIE
今年下半年以来,AI Agent 的话题热度持续攀升。起初 AI 聊天机器人terminal of truths因其在 X 上幽默的发帖和回复(类似微博上的「罗伯特」)而广受关注,并获得了 a16z 创始人 Marc Andreessen 的 5 万美元资助。受到其发布内容的启发,有人创建了 GOAT 代币,短短 24 小时内涨幅超过 10000%。AI Agent 的话题随即引起了 Web3 社区的关注。之后,基于 Solana 的首个去中心化 AI 交易基金 ai16z 问世,推出了 AI Agent 开发框架 Eliza,并引发了大小写代币之争。然而,社区对 AI Agent 的概念仍不清晰:AI Agent 的核心到底是什么?与 Telegram 交易机器人有何不同?
AI Agent 是一种基于大型语言模型(LLM)的智能代理系统,能够感知环境、进行推理决策,并通过调用工具或执行操作来完成复杂任务。工作流程:感知模块(获取输入)→ LLM(理解、推理与规划)→ 工具调用(执行任务)→ 反馈与优化(验证与调整)。
具体来说,AI Agent 首先通过感知模块从外界环境中获取数据(如文本、音频、图像等),并将其转化为可以被处理的结构化信息。LLM 作为核心组件,提供强大的自然语言理解与生成能力,充当系统的「大脑」。基于输入的数据和已有的知识,LLM 进行逻辑推理,生成可能的解决方案或制定行动计划。随后,AI Agent 通过调用外部工具、插件或 API 完成具体的任务,并根据反馈对结果进行验证与调整,形成闭环优化。
在 Web3 的应用场景中,AI Agent 与 Telegram 交易机器人或自动化脚本有何区别?以套利为例,用户希望在利润大于 1% 的条件下进行套利交易。在支持套利的 Telegram 交易机器人中,用户设置好利润大于 1% 的交易策略,Bot 便开始执行。然而,当市场波动频繁,套利机会不断变化时,这些 Bot 缺乏风险评估能力,只要满足利润大于 1% 的条件便执行套利。相比之下,AI Agent 能自动调整策略。例如,当某笔交易的利润超过 1%,但通过数据分析评估其风险过高,市场可能突然变化导致亏损,它会决定不执行这笔套利。
因此,AI Agent 具备自我适应性,其核心优势在于能够自我学习和自主决策,通过与环境(如市场、用户行为等)的互动,根据反馈信号调整行为策略,不断提升任务执行效果。它还能基于外部数据实时做出决策,并通过强化学习不断优化决策策略。
这么一说是不是有点像意图框架下的求解器(slover)?AI Agent 本身也是基于意图的产物,与意图框架下的求解器最大的区别就是,求解器依靠精确算法,具有数学上的严谨性,而 AI Agent 决策依赖于数据训练,往往需要在训练过程中通过不断试错来接近最优解。
AI Agent 框架是是用于创建和管理智能代理的基础设施。目前在 Web3 里,比较流行的框架包括ai16z的 Eliza、zerebro的 ZerePy 和Virtuals的 GAME。
Eliza是一个多功能的 AI Agent 框架,使用 TypeScript 构建,支持在多个平台(如 Discord、Twitter、Telegram 等)上运行,并通过复杂的记忆管理,能够记住先前的对话和上下文,保持稳定一致的个性特征和知识回答。Eliza 采用 RAG(Retrieval Augmented Generation)系统,能够访问外部数据库或资源,从而生成更加准确的回答。此外,Eliza 集成了 TEE 插件,允许在 TEE 中部署,从而确保数据的安全性和隐私性。
GAME是赋能和驱动 AI Agent 进行自主决策和行动的框架。开发者可以根据自己的需求自定义代理的行为,扩展其功能,并提供定制化的操作(如社交媒体发布、回复等)。框架中的不同功能,如代理的环境位置和任务等,被划分为多个模块,方便开发者进行配置和管理。GAME 框架 将 AI Agent 的决策过程分为两个层级:高层规划(HLP) 和 低层规划(LLP),分别负责不同层次的任务和决策。高层规划负责设定代理的总体目标和任务规划,根据目标、个性、背景信息及环境状态制定决策,确定任务的优先级。低层规划则专注于执行层面,将高层规划的决策转化为具体操作步骤,选择合适的功能和操作方法。
ZerePy是一个开源的 Python 框架,用于在 X 上部署 AI Agent。该框架集成了 OpenAI 和 Anthropic 提供的 LLM,使开发者能够构建和管理社交媒体代理,自动化执行如发布推文、回复推文、点赞等操作。每个任务可以根据其重要性设置不同的权重。ZerePy 提供了简洁的命令行接口(CLI),便于开发者快速启动和管理代理。同时,框架还提供了 Replit (一个在线代码编辑和执行平台)模板,开发者可以通过它快速开始使用 ZerePy,而无需复杂的本地环境配置。
AI Agent 看似智能,能够降低入门门槛并提升用户体验,为什么社区会有 FUD?原因在于,AI Agent 本质上仍只是一个工具,目前尚不能完成整个工作流程,只能在某些节点上提升效率、节省时间。而且目前的发展阶段,AI Agent 的作用多集中在帮助用户一键发行 MeMe 及运营社交媒体账号。社区戏称「assests belong Dev,liabilities belong AI」。
不过就在本周aiPool作为代币预售的 AI Agent 发布,利用 TEE 技术实现了去信任化。该 AI Agent 的钱包私钥在 TEE 环境中动态生成,确保安全性。用户可以向 AI Agent 控制的钱包发送资金(例如 SOL),AI Agent 随后根据设定规则创建代币,并在 DEX 上启动流动性池,同时向符合条件的投资者分发代币。整个过程无需依赖任何第三方中介,完全由 AI Agent 在 TEE 环境下自主完成,避免了 DeFi 中常见的 rug pull 风险。可见,AI Agent 正在逐步发展。我认为,AI Agent 能够帮助用户降低门槛、提升体验,哪怕只是简化部分资产发行过程,也是有意义的。但从宏观的 Web3 视角来看,AI Agent 作为链下的产物,当前阶段只是充当辅助智能合约的工具角色,因此无需对其能力过度吹嘘。由于今年下半年除了 MeMe 之外缺乏显著的财富效应叙事,AI Agent 的 hype 围绕 MeMe 而展开由此火了也是正常。单靠 MeMe 并无法维持长期的价值,所以如果 AI Agent 能在交易流程中带来更多创新玩法,提供切实的落地价值,它或许会发展成一种普遍的 infra 工具。
免责声明:本文为转载,非本网原创内容,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如有疑问请发送邮件至:goldenhorseconnect@gmail.com